Transformation of hypersingular integrals and black-box cubature
نویسندگان
چکیده
In this paper, we will consider hypersingular integrals as they arise by transforming elliptic boundary value problems into boundary integral equations. First, local representations of these integrals will be derived. These representations contain so-called finite-part integrals. In the second step, these integrals are reformulated as improper integrals. We will show that these integrals can be treated by cubature methods for weakly singular integrals as they exist in the literature.
منابع مشابه
Flux and traction boundary elements without hypersingular or strongly singular integrals
The present paper deals with a boundary element formulation based on the traction elasticity boundary integral equation (potential derivative for Laplace’s problem). The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the ...
متن کاملA Note on Evaluation of Temporal Derivative of Hypersingular Integrals over Open Surface with Propagating Contour
The short note concerns with elasticity problems involving singular and hypersingular integrals over open surfaces, specifically cracks, with the contour propagating in time. Noting that near a smooth part of a propagating contour the state is asymptotically plane, we focus on 1D hypersingular integrals and employ complex variables. By using the theory of complex variable singular and hypersing...
متن کاملNumerical Integration by Cubature Formulae in Bayesian Neural Networks
We compare two methods for approximating the high dimensional integrals encountered in Bayesian neural networks. The frequently used hybrid Monte Carlo method is contrasted with integration by cubature formulae. We combine the cubature integration method with a nonlinear transformation to make the approximation of the integral easier. An experimental comparison of both integration methods for o...
متن کاملRegularization of the Divergent Integrals I. General Consideration
This article considers weakly singular, singular and hypersingular integrals, which arise when the boundary integral equation (BIE) methods are used to solve problems in science and engineering. For their regularization, an approach based on the theory of distribution and application of the Green theorem has been used. The expressions, which allow an easy calculation of the weakly singular, sin...
متن کاملSmolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree
We study cubature formulas for d-dimensional integrals with a high trigonometric degree. To obtain a trigonometric degreè in dimension d, we need about d ` =`! function values if d is large. Only a small number of arithmetical operations is needed to construct the cubature formulas using Smolyak's technique. We also compare diierent methods to obtain formulas with high trigonometric degree. Abs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001